
MobileFuse: Multimodal Image Fusion at the Edge

H. Perreault1, B. Debaque1, R. David1, M-A. Drouin2, N. Duclos-Hindié1, and S. Roy3

1Thales Group, Thales Digital Solutions, Québec, Canada, hughes.perreault@thalesdigitalsolutions.ca
2National Research Council of Canada, Ottawa, Canada, Marc-Antoine.Drouin@nrc-cnrc.gc.ca

3DRDC Valcartier Research Centre, Québec, Canada, Simon.Roy@drdc-rddc.gc.ca

Abstract—The fusion of multiple images from different
modalities is the process of generating a single output image
that combines the useful information of all input images.
Ideally, the information-rich content of each input image would
be preserved, and the cognitive effort required by the user
to extract this information should be smaller on the fused
image than the one required to examine all images. We propose
MobileFuse, an edge computing method targeted at processing
large amount of imagery in a bandwidth limited environment
using depthwise separable Deep Neural Networks (DNNs).
The proposed approach is a hybrid between generative and
blending based methods. Our approach can be applied in
various fields which require low latency interaction with the
user or with an autonomous system. The main challenge in
training DNNs for image fusion is the sparsity of data with
representative ground truth. Registering images from different
sensors is a major challenge in itself, and generating a ground
truth from them is another massive one. For this reason, we
also propose a multi-focus and multi-lighting framework to
generate training dataset using unregistered images. We show
that our edge network can perform faster than its state-of-the-
art baseline, while improving the fusion quality.

Keywords-image fusion; multimodality; edge-based comput-
ing

I. INTRODUCTION

The various advancements in computer vision and artifi-
cial intelligence in the last decade has caused a growing
interest in their use for multiple applications. However,
these algorithms are often greedy in computing power and
memory. For applications that require mobility, like aug-
mented reality or self-flying drones, this is a problem since
this computing power comes at the prices of weight and
volume. The use of edge-computing becomes essential, since
sending data away for remote computing would cause much
bandwidth transmission and latency. In this work, we explore
power-efficient visible and thermal image fusion.

Multi-modality image fusion is the process of generating a
single output image that combined the useful information of
all input ones. Ideally, the information-rich content of each
input image would be preserved, and the cognitive effort
required by the user to extract this information should be
smaller on the fused image than the one required to examine
all images. In the full pipeline, images from different sensors
would have to be registered [1], [2], [3], [4], [5], [6] before
being fed to a fusion network. The proposed approach

Registration
Blending

mask

Blending
Module

Infrared

Visible

Fusion

Fusion CNN

Figure 1: An overview of our method.

focuses on multimodal image fusion, and assumes pre-
registered input images. Note that, the training method we
propose does not require a registered image dataset.

Deep neural networks (DNNs) have become a popular
tool for multimodal image fusion, because of the quality
of the complex representation they learn from data. DNNs
can be trained on a dataset of multimodal images and their
corresponding ground truth, and then used to fuse new
images at test time. The principal difficulty about this is the
availability of the ground-truth, as it often does not exist. To
alleviate this problem, we develop a procedure to generate
a novel multi-focus and multi-lighting dataset from Pascal
VOC [7], detailed in section III-B. Our dataset generation
procedure can be replicated with any dataset with semantic
segmentation ground-truth, which makes it very practical
and easy to replicate to other domains.

Additionally, we present MobileFuse, a fast and light
multimodal image fusion network. MobileFuse is based on
MobileNet [8], and thanks to depthwise separable convolu-
tions, can reach the very low number of 33K parameters. It
can run at 150 fps on GPU, and 30 fps on CPU. As it is
similar in architecture, IFCNN [9] is used as a baseline for
comparing the fusion quality and speed improvement.

Furthermore, most deep fusion methods are purely genera-
tive, meaning that the network directly outputs the resulting
image. Although they usually perform well, they are not
exempt from making mistakes, as the resulting image is

based on training data. This could potentially lead to a lack
of trust in the fusion results from the user. To improve
this weakness, and prevent the network from hallucinating
altogether, we introduce a novel blending module. The mod-
ule uses a different output strategy than purely generative
methods. Instead of training the network to output an image
directly, we train the network to generate a blending map
M such that:

Output = (image1 ×M) + (image2 × (1−M)), (1)

where the blending operation is done inside the network,
and the loss is based on the resulting image, and not the map
itself. The results from this module are more trustworthy
than generative methods, as well as producing images with
a higher fusion quality, as shown in Table II and Table III.

The resulting pipeline (seen in Figure 1) is a light fusion
CNN that takes two images as inputs, extracts a latent
representation from them with a multi-stream architecture,
outputs a blending mask, generates an output image from the
blending mask, and is trained end-to-end on the generated
fusion.

The contributions in this paper are:
1) We propose MobileFuse, a novel deep light network

architecture to perform image fusion, and demonstrate
its quality against our baseline.

2) We present a novel output strategy for image fusion,
which is a hybrid between generative and blending
based methods.

3) We introduce a new procedure to generate fusion
datasets with corresponding ground-truths, as long as
the semantic segmentation is available.

The rest of the paper is organized as follows: related work
are first presented, then our method and implementation de-
tails are detailed, followed by the experiments descriptions,
results, and conclusion.

II. RELATED WORK

A. Image fusion

The following is an overview of techniques used to
perform multimodal image fusion:

The encoder-decoder architectures [10], [11], [12], [13]
are commonly used for image fusion. They consist of using
a CNN or other method to extract features from the input
images, and then combining the features using a decoder
network. To ensure that the decoder learns something useful,
the latent, or intermediary representation, has to be smaller
than the input. This is the encoding part. The decoder
network is then trained to minimize the difference between
the fused decoded output and the ground truth.

The multi-stream architectures [14], [15], [9], [16] pro-
cess each input image separately and combine the outputs
in a final stage. The streams can either share parameters, or
be trained completely separately, depending on the situation.

This approach allows the processing of each modality indi-
vidually, which could be better parallelized than other frame-
works. It also gives the advantage of letting each stream of
the network learn the correct feature extraction mechanisms
for each modality, which might be very different. In the case
of infrared and visible image fusion for instance, the texture,
contrast, and saliency recognition is extremely different in
each stream.

In the multi-task learning approach, the network is
trained to perform multiple tasks simultaneously, such as
image fusion and image segmentation [17]. This approach
can improve the overall performance, as the loss on other
tasks can often help the network avoid overfitting and learn
more general latent representations. It can also be useful for
real-time processing, if other tasks are needed anyway. Other
notable works include [18], [19], [20].

Different loss functions can be used to train the network,
and often have a great impact on the end result. Using a
loss which is not representative enough of the task can be
devastating for the results. For example, a combination of
mean squared error and perceptual loss to train the network
has been used [9]. Other work bringing originality in using
loss functions include [21], [22], [23], [24]

Many variations and combinations of these frameworks
have been proposed to improve fusion quality, such as
incorporating attention mechanisms [25], [26], [27], [28] and
adversarial training [29], [30], [31], [32], [33], [34].

B. Speeding-up deep neural networks

The following is an overview of techniques used to speed
up neural networks:

Model pruning is a technique to reduce the size and
complexity of neural networks by removing neurons and
connections that have minimal impact on the network’s
accuracy. The idea is to simplify the network in order
to get a good trade-off between speed and quality. The
network is first trained, then the importance of each neuron
is evaluated based on criteria such as the weight’s magnitude
or activation. Based on a threshold, the least impactful
neurons are then removed, reducing the network’s size and
computational complexity. Pruning can result in significant
reduction in model size and computation, but can also cause
accuracy loss, so validation is necessary in order to reach
the desired trade-off. The most notable example in this field
include [35], [36], [37], [38], [39].

Quantization is a technique used to reduce the memory
and computational requirements of DNNs by converting
the network’s parameters from high-precision floating point
values to integer values. This reduces the number of bits
required to represent each parameter, enabling the deploy-
ment of larger and more complex networks on edge devices.
Quantization can also result in faster computation, as low-
precision arithmetic operations are typically faster than high-
precision operations. However, quantization can also lead to

accuracy loss, as the reduced precision can result in rounding
errors and loss of information. To mitigate this, various
quantization techniques have been proposed [40], [41], [42],
[43].

Network architecture design for speeding up neural
networks consists of selecting and arranging the building
blocks of a DNN to reduce its computational and memory
requirements while keeping its accuracy as high as possible.
This often involves choosing lightweight building blocks,
such as depthwise separable convolutions, or reducing the
number of layers. The choice of activation functions, loss
functions, and optimizers can also impact the speed of
the network. The design process often requires trade-offs
between speed and accuracy, and is often an experimental
process, with models being modified and refined based on
results. By designing efficient network architectures [8],
[44], [45], [46], [47], [48], [1], it is possible to significantly
speed up neural network training and inference.

III. METHODOLOGY

A. Mobile fusion network

When developing our network, we had three objectives
in mind: making it faster, lighter, and improving the fusion
quality. To tackle the first and second objectives, we adapted
one of the most popular edge network available, MobileNet.
MobileNet introduced the depthwise separable convolution,
which divides the standard 2D convolution with a 3D filter
into two operations, one 2D convolution with a filter of
depth one (in other words, a 2D filter), followed by a 1× 1
convolution of depth N , N being the depth of feature map to
be processed. Using these as building blocks, we developed
a classic multi-stream architecture, seen in Figure 2. Our
network uses MAX as the fusion operation, as it proved to
be best by test.

In some fusion deep networks, we noticed a color fidelity
issue that was making the fused image unnatural to the
eye. In order to alleviate this issue and to further improve
the fusion quality, we developed a blending module. The
blending module takes as input a blending mask produced
by the network, normalized between 0 and 1, and both input
images, and combines them using Equation 1. The output
of this module is the generated fusion image. This operation
is fully differentiable, and the network is trained on the
resulting output image, not the mask itself. The loss is a
simple MSE. Some variations of this blending module are
evaluated in an ablation study (shown in table II and III).

B. Fusion dataset generation

To train the network, a large quantity of fusion images
with ground-truth are needed. These images are not easily
available, thus the need to create a new dataset of our own.
The difficulty arises from the fact that not only visible to
thermal registration is challenging, but even with perfectly
aligned images, the best fusion is subjective, and actually

depends on the task. We developed a procedure that creates
input images in such a way that the network can learn to
recognize high quality parts of each input.

From Pascal VOC [7], we generated both a multi-lighting
and multi-focus fusion dataset (see Figure 3).

For the multi-lighting part, we created images to be fused
by increasing or decreasing the pixel values. This generated
an over-saturated image, and a darkened one that were used
as inputs to the CNN. For the multi-focus part, we use
instance segmentation annotations to create a foreground /
background separation. From this separation, we could blur
the rest using a Gaussian filter, thus creating two images
to be fused, the foreground and the background. These two
images can be fed to our multi-stream CNN. In both cases,
the original image is used as ground-truth.

In the feature extraction step, one could expect that the
neural network learns to capture the most sharp and textured
parts of the image. Thus, the network is expected to prioritize
the input with the most content-rich information, whatever
the modalities used for training. In our experiments related
to visible and thermal image fusion, this approach performs
well.

C. Implementation details

The network was implemented in PyTorch [49] and
trained with PyTorch Lightning [50]. From our dataset, a
training, validation and testing set were fixed in advance.
To optimize data diversity, multi-focus and multi-lightning
images were balanced in each training batches. The hard-
ware used in this research is an Intel® Core™ i7-8750H
CPU, an NVIDIA GeForce GTX 1060 Mobile for the GPU,
and a Raspberry Pi 3 Model B+ for the edge device.

IV. EXPERIMENTS

A. Datasets

We perform our experiments on two thermal and visible
image datasets, VIFB [51] and M3FD [52], which are public
and open-source. Both of them have a completely different
domain from our training data, which do not even contain
any thermal imagery.

Our model already was trained, validated, and tested
on our novel Pascal VOC Fusion dataset, but to avoid
over fitting, the fusion experiments were performed on
real visible-thermal datasets without ground-truth. For this
reason, we used an aggregation of metrics commonly used
in the literature.

B. Metrics

Defining meaningful metrics for image fusion quality is a
challenging issue. Often times, the metrics used do not seem
to be particularly useful, or methods can be aggressively
optimized for a given metric. For this reason, numerous
metrics are used in this work and aggregated to determine
the best methods. Even the aggregation strategies could be

~9
.5

K

pa
ra

m
s

MAX

Input 1

Input 2

Blending

mask

Normalize Blending
module

Output

~4
.5

K

pa
ra

m
s

~9
.5

K

pa
ra

m
s

~4
.5

K

pa
ra

m
s

~5
.5

K

pa
ra

m
s

Legend
 : 3x3 convolution block with batch normalization and ReLU
 : 3x3 depthwise separable convolution block with batch normalization and ReLU
 : + a final depthwise separable convolution

Figure 2: An overview of our network. The blending module consists of Equation 1. Better seen in color. The number of
parameters for each component of the proposed network are given.

(a) Ground-truth (b) Foreground mask

(c) Background blurred (d) Foreground blurred

(e) Over saturated (f) Darkened

Figure 3: An example of the image transformations applied
on Pascal VOC [7] to create our dataset.

debatable, in our case, we ended using an average ranking
(the rank on each metric, averaged). Note that for some
metrics, large values indicate higher qualities, while for
others smaller values are preferable. The metrics used in
this work are presented in Table I:

C. Fusion experiment

The methods were first trained on our Pascal VOC fusion
dataset, with a full cycle of validation and testing. In a later
stage, they were fed the VIFB and M3FD images without
having seen them in the first phase. The resulting fused
images are then evaluated with our metrics. Since we use so

Acronym name ↑ / ↓
AG Average gradient ↑
CE Cross entropy ↓
EI Edge intensity ↑
MI Mutual information ↑

PSNR Peak signal-to-noise ration ↑
RMSE Root mean squared error ↓

SF Spatial frequency ↑
SSIM Structural similarity index measure ↑

SD Standard deviation ↑

Table I: A description of the metrics used for evaluation. ↑
and ↓ mean greater or smaller is better, respectively.

many metrics, the aggregation strategy is to use the average
ranking on each metric, for each method. For example, if a
method obtains first rank on one metric, then third on another
one, and fourth on the final one, the average ranking would
be (1 + 3 + 4)/3 = 2.6. The results are shown in Table II
and Table III.

D. Benchmarking

For the speed benchmarking, results are shown in Ta-
ble IV. The models were compared in the same conditions
and hardware. For the CPU and the Raspberry Pi 3 B+, the
methods were wrapped into an ONNX [53] file, and ran on
the device using ONNX Runtime.

For the bandwidth benchmarking, results are shown in
Table V. Four scenarios are explored, and their bandwidth
cost in MB/s are shown, both for the upload and the
download. Experiments were conducted using the average
input and output image size from the entire M3FD dataset,
and assuming a fixed 30 fps frame rate. The four explored
scenarios are remote and edge computing, paired with the
constraint of needing the result remotely, and needing the
result locally.

Visible image Ours Ours (zoomed)

Infrared image IFCNN IFCNN (zoomed)

Visible image Ours Ours (zoomed)

Infrared image IFCNN IFCNN (zoomed)

Visible image Ours Ours (zoomed)

Infrared image IFCNN IFCNN (zoomed)

Figure 4: Qualitative results on the VIFB (row 1-4) and M3FD (row 5-6) dataset.

Table II: Results on the VIFB dataset. Best result in bold.

Methods\Metrics AG ↑ CE ↓ EI ↑ EN ↑ MI ↑ psnr ↑ rmse ↓ SF ↑ ssim ↑ SD ↑ avg. rank ↓
wavelet-max 3.903 2.210 8.411 6.781 1.128 45.315 0.138 10.686 1.199 43.479 3.000

IFCN 4.874 2.213 8.234 6.668 1.103 45.371 0.135 12.414 1.164 37.385 3.800
Blending only 3.350 1.666 8.428 6.712 1.114 45.934 0.124 10.154 1.228 34.608 2.700

Generative only 4.545 2.214 8.243 6.703 1.110 45.478 0.134 11.976 1.171 39.492 3.300
MobileFuse (ours) 3.724 1.909 8.451 6.815 1.114 45.808 0.127 10.806 1.210 37.589 2.200

Table III: Results on the M3FD dataset. Best result in bold.

Methods\Metrics AG ↑ CE ↓ EI ↑ EN ↑ MI ↑ psnr ↑ rmse ↓ SF ↑ ssim ↑ SD ↑ avg. rank ↓
wavelet-max 3.432 1.602 9.488 6.508 1.176 45.683 0.056 10.254 1.436 31.475 3.0

IFCNN 4.378 2.173 9.536 6.532 1.146 45.751 0.054 11.712 1.420 27.505 3.2
Blending only 2.606 1.467 9.440 6.460 1.140 46.491 0.051 8.939 1.466 26.626 3.2

Generative only 5.799 1.882 9.682 6.583 1.137 45.803 0.178 14.691 1.321 27.517 2.9
MobileFuse (ours) 3.148 1.803 9.638 6.603 1.134 46.177 0.052 9.976 1.452 28.132 2.7

Table IV: Results of our speed and memory experiments.
Best result in bold. All results are produced with 256×256
images for memory constraints on the edge device.

Metric \Method IFCNN MobileFuse (ours)
FPS (GPU) ↑ 134 152
FPS (CPU) ↑ 16 30

FPS (Rasp. Pi 3B+) ↑ 0.7 1.5
params. ↓ ∼130K ∼33K

Table V: Results of our bandwidth transmission experiments.
All results assume a frame rate of 30 fps. Best result in bold.

Remote computing Edge computing
Bandwidth cost (MB/s) upload download upload download
Result needed on device

51.17
31.01 0 0

Result needed remotely 0 31.01 0

V. RESULTS

A. Discussion

As we can see thanks to the quantitative evaluation in
Table II and Table III, our method seems to generate more
useful information than the baseline network IFCNN, as well
as the wavelet fusion method.

Additionally, we demonstrate the utility of the blending
module by training two other versions of our network, the
blending only and generative only. The generative only
approach is trained to directly output the ground-truth image,
without using the blending module. The blending only
approach is trained to output a blending mask, by using
the foreground mask as ground-truth. As we can see in
Figure 3, if image1 is (c) and image2 is (d), then the
perfect blending mask would be (b). To clarify further, the
main difference between MobileFuse and the blending only
version is that MobileFuse is trained with the loss on the
generated image, and the blending only is trained with the
loss on the blending mask. Overall, the quantitative results of
both of these approaches demonstrate that using the hybrid
approach of the differentiable blending module works better.

Furthermore, our method runs slightly faster than IFCNN
on GPU, and close to 200% faster on CPU and on an edge
device (seen in Table IV), gaining vital time which could be
used to perform other useful computation, or just performs
smoother rendering of the scene.

It also goes without saying that Table V demonstrates
the bandwidth gains one can achieve using edge computing.
Even in the worst scenario where the result of the fusion
would have to be transferred back, not having to transfer
the inputs for remote computing achieves a gain of 165%
of total bandwidth. Of course, the device does not have to
transfer back the result in the case of remote computing,
since the server already computed it.

Beyond the quantitative evaluation, Figure 4 shows some
relevant qualitative examples on the VIFB and M3FD
dataset. We can observe that our method performs just as
well as or better than IFCNN for vital parts of the fusion,
but also renders the background of the scenes much better.
On the tested imagery, IFCNN seems to have a bias for
averaging the inputs and tends to incorporate much more
infrared than visible everywhere, causing an impression of
over saturation in the fusion image. For example, the trees
are more natural and better contrasted with our method, and
fusion images seem to be less grainy. The example on rows
5-6 demonstrates the better conservation of color fidelity of
MobileFuse.

VI. CONCLUSION

We introduce MobileFuse, a lightweight image fusion
method based on a depthwise separable deep network. The
proposed method is suitable for edge computing in band-
width limited environments. It is a hybrid between generative
and blending based methods. On a low-power platform, the
proposed method is about 200% faster than IFCNN and on
average outperforms IFCNN. Different strategies for further
speeding up MobileFuse are discussed. We also propose
a strategy for creating image fusion datasets using multi-
focus and multi-lighting. This strategy for creating training
datasets does not require registered thermal and visible

imagery pairs. Future work might include further speed and
memory improvements. We also expect to explore human-
centric quality metrics.

REFERENCES

[1] P. K. A. Vasu, J. Gabriel, J. Zhu, O. Tuzel, and A. Ranjan, “An
improved one millisecond mobile backbone,” arXiv preprint
arXiv:2206.04040, 2022.

[2] G.-A. Bilodeau, A. Torabi, P.-L. St-Charles, and D. Riahi,
“Thermal–visible registration of human silhouettes: A simi-
larity measure performance evaluation,” Infrared Physics &
Technology, vol. 64, pp. 79–86, 2014.

[3] V. Sanchez, G. Prince, J. P. Clarkson, N. M. Rajpoot, et al.,
“Registration of thermal and visible light images of diseased
plants using silhouette extraction in the wavelet domain,”
Pattern Recognition, vol. 48, no. 7, pp. 2119–2128, 2015.

[4] A. Torabi, G. Massé, and G.-A. Bilodeau, “An iterative
integrated framework for thermal–visible image registration,
sensor fusion, and people tracking for video surveillance
applications,” Computer Vision and Image Understanding,
vol. 116, no. 2, pp. 210–221, 2012.

[5] B. Debaque, H. Perreault, J.-P. Mercier, M.-A. Drouin,
R. David, B. Chatelais, N. Duclos-Hindie, and S. Roy, “Ther-
mal and visible image registration using deep homography,”
in 2022 25th International Conference on Information Fusion
(FUSION), pp. 1–8, IEEE, 2022.

[6] T. Pouplin, H. Perreault, B. Debaque, M. Drouin, N. Duclos-
Hindie, and S. Roy, “Multimodal deep homography estima-
tion using a domain adaptation generative adversarial net-
work,” in 2022 IEEE International Conference on Big Data
(Big Data), pp. 3635–3641, IEEE, 2022.

[7] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman, “The pascal visual ob-
ject classes challenge: A retrospective,” International Journal
of Computer Vision, vol. 111, pp. 98–136, Jan. 2015.

[8] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” arXiv preprint arXiv:1704.04861, 2017.

[9] Y. Zhang, Y. Liu, P. Sun, H. Yan, X. Zhao, and L. Zhang,
“Ifcnn: A general image fusion framework based on convolu-
tional neural network,” Information Fusion, vol. 54, pp. 99–
118, 2020.

[10] L. Jian, X. Yang, Z. Liu, G. Jeon, M. Gao, and D. Chisholm,
“Sedrfuse: A symmetric encoder–decoder with residual block
network for infrared and visible image fusion,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 70, pp. 1–15,
2020.

[11] H. Xu, M. Gong, X. Tian, J. Huang, and J. Ma, “Cufd:
An encoder–decoder network for visible and infrared image
fusion based on common and unique feature decomposi-
tion,” Computer Vision and Image Understanding, vol. 218,
p. 103407, 2022.

[12] L. Jian, X. Yang, Z. Liu, G. Jeon, M. Gao, and
D. Chisholm, “A symmetric encoder-decoder with residual

block for infrared and visible image fusion,” arXiv preprint
arXiv:1905.11447, 2019.

[13] J.-L. Yin, B.-H. Chen, Y.-T. Peng, and C.-C. Tsai, “Deep prior
guided network for high-quality image fusion,” in 2020 IEEE
International Conference on Multimedia and Expo (ICME),
pp. 1–6, IEEE, 2020.

[14] X. Zhu, S. Li, Y. Gan, Y. Zhang, and B. Sun, “Multi-stream
fusion network with generalized smooth l 1 loss for single
image dehazing,” IEEE Transactions on Image Processing,
vol. 30, pp. 7620–7635, 2021.

[15] Y. Hu, M. Lu, and X. Lu, “Driving behaviour recognition
from still images by using multi-stream fusion cnn,” Machine
Vision and Applications, vol. 30, pp. 851–865, 2019.

[16] D. LEI, J. DU, L. ZHANG, and W. LI, “Multi-stream
architecture and multi-scale convolutional neural network
for remote sensing image fusion,” Journal of Electronics &
Information Technology, vol. 44, no. 200792, p. 237, 2022.

[17] Y. Liu, F. Mu, Y. Shi, and X. Chen, “Sf-net: A multi-
task model for brain tumor segmentation in multimodal mri
via image fusion,” IEEE Signal Processing Letters, vol. 29,
pp. 1799–1803, 2022.

[18] L. Qu, S. Liu, M. Wang, and Z. Song, “Transmef: A
transformer-based multi-exposure image fusion framework
using self-supervised multi-task learning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 36,
pp. 2126–2134, 2022.

[19] A. Fang, X. Zhao, and Y. Zhang, “Cross-modal image fu-
sion guided by subjective visual attention,” Neurocomputing,
vol. 414, pp. 333–345, 2020.

[20] Q. Zhang and M. D. Levine, “Robust multi-focus image
fusion using multi-task sparse representation and spatial con-
text,” IEEE Transactions on Image Processing, vol. 25, no. 5,
pp. 2045–2058, 2016.

[21] Y. Qi, S. Zhou, Z. Zhang, S. Luo, X. Lin, L. Wang, and
B. Qiang, “Deep unsupervised learning based on color un-
referenced loss functions for multi-exposure image fusion,”
Information Fusion, vol. 66, pp. 18–39, 2021.

[22] S. Eghbalian and H. Ghassemian, “Multi spectral image
fusion by deep convolutional neural network and new spec-
tral loss function,” International Journal of Remote Sensing,
vol. 39, no. 12, pp. 3983–4002, 2018.

[23] C. Cheng, C. Sun, Y. Sun, and J. Zhu, “Stylefuse: An
unsupervised network based on style loss function for in-
frared and visible image fusion,” Signal Processing: Image
Communication, vol. 106, p. 116722, 2022.

[24] Z. Zhu, X. Yang, R. Lu, T. Shen, X. Xie, and T. Zhang,
“Clf-net: Contrastive learning for infrared and visible image
fusion network,” IEEE Transactions on Instrumentation and
Measurement, vol. 71, pp. 1–15, 2022.

[25] B. Yang and S. Li, “Visual attention guided image fusion with
sparse representation,” Optik, vol. 125, no. 17, pp. 4881–4888,
2014.

[26] J. Li, H. Huo, C. Li, R. Wang, and Q. Feng, “Attentionf-

gan: Infrared and visible image fusion using attention-based
generative adversarial networks,” IEEE Transactions on Mul-
timedia, vol. 23, pp. 1383–1396, 2020.

[27] H. Li, X.-J. Wu, and T. Durrani, “Nestfuse: An infrared and
visible image fusion architecture based on nest connection
and spatial/channel attention models,” IEEE Transactions on
Instrumentation and Measurement, vol. 69, no. 12, pp. 9645–
9656, 2020.

[28] J. Liu, X. Fan, J. Jiang, R. Liu, and Z. Luo, “Learning a deep
multi-scale feature ensemble and an edge-attention guidance
for image fusion,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 32, no. 1, pp. 105–119, 2021.

[29] J. Ma, W. Yu, C. Chen, P. Liang, X. Guo, and J. Jiang, “Pan-
gan: An unsupervised pan-sharpening method for remote
sensing image fusion,” Information Fusion, vol. 62, pp. 110–
120, 2020.

[30] H. Xu, J. Ma, and X.-P. Zhang, “Mef-gan: Multi-exposure
image fusion via generative adversarial networks,” IEEE
Transactions on Image Processing, vol. 29, pp. 7203–7216,
2020.

[31] H. Zhang, Z. Le, Z. Shao, H. Xu, and J. Ma, “Mff-gan:
An unsupervised generative adversarial network with adaptive
and gradient joint constraints for multi-focus image fusion,”
Information Fusion, vol. 66, pp. 40–53, 2021.

[32] H. Zhang, J. Yuan, X. Tian, and J. Ma, “Gan-fm: Infrared and
visible image fusion using gan with full-scale skip connection
and dual markovian discriminators,” IEEE Transactions on
Computational Imaging, vol. 7, pp. 1134–1147, 2021.

[33] Q. Li, L. Lu, Z. Li, W. Wu, Z. Liu, G. Jeon, and X. Yang,
“Coupled gan with relativistic discriminators for infrared and
visible images fusion,” IEEE Sensors Journal, vol. 21, no. 6,
pp. 7458–7467, 2019.

[34] Y. Wang, S. Xu, J. Liu, Z. Zhao, C. Zhang, and J. Zhang,
“Mfif-gan: A new generative adversarial network for multi-
focus image fusion,” Signal Processing: Image Communica-
tion, vol. 96, p. 116295, 2021.

[35] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell,
“Rethinking the value of network pruning,” arXiv preprint
arXiv:1810.05270, 2018.

[36] M. Zhu and S. Gupta, “To prune, or not to prune: explor-
ing the efficacy of pruning for model compression,” arXiv
preprint arXiv:1710.01878, 2017.

[37] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi,
“Dynamic model pruning with feedback,” arXiv preprint
arXiv:2006.07253, 2020.

[38] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerat-
ing very deep neural networks,” in Proceedings of the IEEE
international conference on computer vision, pp. 1389–1397,
2017.

[39] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag,
“What is the state of neural network pruning?,” Proceedings
of machine learning and systems, vol. 2, pp. 129–146, 2020.

[40] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning

with low precision by half-wave gaussian quantization,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5918–5926, 2017.

[41] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantiza-
tion and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

[42] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang,
and X.-s. Hua, “Quantization networks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7308–7316, 2019.

[43] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quan-
tization of deep convolutional networks,” in International
conference on machine learning, pp. 2849–2858, PMLR,
2016.

[44] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-
C. Chen, “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4510–4520, 2018.

[45] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching
for mobilenetv3,” in Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 1314–1324, 2019.

[46] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2:
Practical guidelines for efficient cnn architecture design,” in
Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

[47] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An
extremely efficient convolutional neural network for mobile
devices,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 6848–6856, 2018.

[48] D. Li, X. Wang, and D. Kong, “Deeprebirth: Accelerating
deep neural network execution on mobile devices,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, 2018.

[49] A. e. a. Paszke, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural
Information Processing Systems 32, pp. 8024–8035, Curran
Associates, Inc., 2019.

[50] W. Falcon et al., “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning,
vol. 3, 2019.

[51] X. Zhang, P. Ye, and G. Xiao, “Vifb: A visible and infrared
image fusion benchmark,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 104–105, 2020.

[52] J. Liu, X. Fan, Z. Huang, G. Wu, R. Liu, W. Zhong,
and Z. Luo, “Target-aware dual adversarial learning and a
multi-scenario multi-modality benchmark to fuse infrared and
visible for object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5802–5811, June 2022.

[53] J. Bai, F. Lu, K. Zhang, et al., “Onnx: Open neural network
exchange.” https://github.com/onnx/onnx, 2019.

