
Multimodal Deep Homography Estimation Using a
Domain Adaptation Generative Adversarial Network

T. Pouplin1, H. Perreault1, B. Debaque1, M-A. Drouin2, N. Duclos-Hindié1, and S. Roy3
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Abstract—Multimodal image registration is a challenging task.
To begin with, the variation of parallax in the images makes the
process intrinsically tricky. Additionally, due to phenomenology
differences in modalities, the appearance of the same feature may
vary significantly between the images making the registration
laborious. To help mitigate these issues, we propose a two-step
approach targeted at visible and infrared imagery. First, we train
a generative adversarial network to learn the domain transfer
function between the visible and the infrared domain, thereby
mitigating the impact of the visual dissimilarity between the
images. Second, we train a deep Siamese network to compute
a homography in an unsupervised setting. Both elements are
combined and trained sequentially. Our method is evaluated on
a publicly available dataset. Our results show that the proposed
method provides a reduction of more than 30% on average from
the previous state-of-the-art, and outperforms several baselines
and recent deep homography methods.

I. INTRODUCTION

Image registration is an essential step of many computer vi-
sion applications that require images from different viewpoints
to be transformed into the same coordinate system. This paper
addresses the more challenging task of multimodal image
registration. This task is arduous since the visual appearance
of a feature can significantly vary between the modalities. In
this paper, we focus on infrared and visible imagery.

Several registration methods have been proposed [1]–[6].
Some of those methods use a homography to establish the
mapping between the images. A homography is a projective
transformation that provides a valid mapping when the rigid
transformation between the views is limited to a rotation or
when the scene is composed of a single plane. For more
general scenes and rigid transformations, a homography can
still be used to approximate this mapping assuming that the
translation between the views is small with respect to the
distance of the scene.

We propose a domain transfer generative adversarial net-
work (GAN) to facilitate the multimodal image registration
prior to estimating a homography using a Siamese deep
networks. We hypothesize that a domain shift from visible to
infrared performed by a GAN will improve the performance
of the deep homography estimator.

Most classical homography estimators are based on features
such as corners, lines or more modern descriptors that are rota-
tion invariant, illumination invariant and/or scale invariant [7].
The use of those detectors is challenging in the multimodality

Fig. 1. Our model finds the homography matrix that best registers images
from the visible and infrared spectrum. On the left is the visible image, in the
middle the infrared, and on the right is a fusion of the visible and the warped
infrared using an anaglyph.

context since the appearance of matching features can vary
significantly between modalities [8]. In recent work, Debaque
et al. [9] made some progress using a deep homography
estimator with a Siamese backbone. Their network could find
some common features between the visible and the infrared
domains, although it failed on some imagery. To deal with
those pathological cases, we propose to use a domain transfer
GAN to preprocess the visible image. The preprocessed image
is then fed to a deep homography network that estimates
the projective transformation between the visible and infrared
images.

In this paper, we exploit the recent success of GAN to
solve various image-to-image translation problems that are
somewhat related to ours. Notable examples include Cy-
cleGAN [10], Pix2Pix [11] and ThermalGAN [12]. These
networks can perform style transfer, season change, day to
night, edges to photo, etc. For certain tasks, GANs are known
to hallucinate some image features. In our context, this is not
an issue since the GAN-generated image is never meant to be
displayed to users and are rather fed to a CNN. A change in
illumination or texture of the image might affect the visual
quality, but not necessarily the registration quality, once the
image is transformed into the latent space.

We trained the proposed method using a visible and infrared
public dataset which includes registered and unregistered
imagery. We first use registered infrared and visible images
to train the modality transfer GAN. In the second stage, we
use the unregistered infrared and registered visible to estimate
a homography between the two (as seen in Figure 1), and
validate our process using handmade ground truth. Note that
the ground truth is only used for testing, as the training is
done in an unsupervised way.



The remainder of this paper is divided as follows. Section II
presents the related work. An overview of the proposed ap-
proach is outlined in Section III. Finally, Section IV, V and VI
presents the experiments, the discussion and the final remarks.

II. STATE OF THE ART

A. Image registration

There are several families of methods that perform image
registration. Some methods produce various geometric trans-
forms directly [13]–[18], while others produce an elastic trans-
formation using a displacement field [19]–[22]. Some authors
change focus on other topics like the representation [23]–[26]
or run-time [27]–[31]. Some other notable work in this field
includes [32]–[36].

Thermal to visible matching is a much more challenging
topic due to the differences in modalities. The difficulties
arise especially when finding modality-invariant similarity
metrics or common discriminative representations of both
modalities. Despite that, most methods will rely on the same
techniques for visible-to-visible matching [37]–[42]. Multiple
works perform matching using a patch-based approach [40],
[43]–[46]. On the other hand, other methods will focus on
learning discriminative representations [37], [39], [47]–[49]
Several authors have proposed deep-network methods to per-
form feature extraction and matching between pairs of images
[30], [50]. Typically, these networks are not specialized for
multimodal imagery.

B. GANs for modality transfer

In this work, we explored the use of GANs to perform
modality transfer as part of our global architecture. GANs are
widely used for cross modalities applications. These networks
are able to find relations and consistency between domains.
Those networks use a very general loss made by a discrimi-
nator that is trained at the same time as the generator. Hence,
this generality made it a powerful tool for studying cross-
modality in a wide range of domains with minor adaptation.
Among all its possible applications, we mainly focus on image
translation from one modality to another [10], [11], [51]–
[57]. This application has recently gained lots of attention
as it facilitates image visualization by combining multiple
sources in medical imagery [51] or increases model accuracy
by shifting the image to a modality better dealt with by a
previous model [57].

In this paper, we focus on the task of domain shift for
images taken by the same source from the infrared domain
to the visible domain [12], [58]–[61], and conversely from
the visible domain to the infrared domain [61]–[66]. A wide
variety of GANs can perform such tasks as this kind of
network has seen some evolution to better suit the distribution
of the data at hand. Thus, CycleGAN is often used to deal with
unpaired data [58], [60], [62], [66] while ConditionalGAN is
used for datasets with paired images from both domains [11].
Finally, when further data are available, or more information
on data distribution is known, more complex architectures can
be used [63], [67].

III. PROPOSED METHOD

The proposed method performs the multimodal image reg-
istration by connecting a modality transfer GAN to a deep
homography estimation network (see Figure 2).

A. Modality transfer

Given the good performance of the Deep Homography
method on registration inside the infrared domain, we have
chosen to translate images from the visible domain (Ivis) to the
infrared (IR) domain. This newly generated must synthetically
be as close as possible to an image taken from the same point,
but with an IR camera instead. Once the translation is realized,
we use the newly synthetically generated IR image (Isir) and
the original IR image (Iir) to compute the homography matrix
with the Deep Homography network. This homography is
computed to register Iir with Isir, however, if the translation
from the visible domain to the IR one has been performed
correctly, the homography matrix is equal to the one describing
the Iir to Ivis registration.

B. Generative adversarial network

To perform the image translation from the visible domain
to the IR domain, we use generative adversarial networks.
Because paired image datasets were available, we used pix2pix
conditional GAN method.

The GAN is composed of a generator and a discriminator.
The generator (seen in Table II) must generate synthetic

IR images with a visible image as input, while the discrim-
inator must decide whether an image is a real IR image
or a synthetically generated one. In the pix2pix model, the
generator training loss is the combination of the GAN loss
which is the mean square estimator of the difference between
the discriminator prediction and the ground truth, and a pixel
loss which is the L1 norm of the targeted paired IR image and
the synthetically generated one.

The discriminator (seen in Table I) training loss is the mean
of the real loss and fake loss. The real loss is the MSE of the
difference between ground truth and discriminator predictions
when given real IR images, and the fake loss is the MSE of the
difference between ground truth and discriminator predictions
when given synthetically generated IR images.

Both parts of the pix2pix model are trained simultaneously.

TABLE I
DETAILS DISCRIMINATOR ARCHITECTURE

Layer 1 2 3 4 5
Type conv pool conv pool fc
Kernel 7 3 3 - -
Stride 2 2 1 1 -
Channel 64 - 1024 - 8

C. GAN’s training

The training of the GAN is performed using a dataset of
registered visible and IR images. The image registration step
for the training dataset is crucial as we want to limit the
deformation between the original visible images and synthet-
ically generated ones. We used 256x256 pixels images with a
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Fig. 2. Our network architecture. The terms VIS and IR represent the visible and infrared images respectively.

TABLE II
DETAILS GENERATOR ARCHITECTURE

Layer 1 2 3 4 5
Type conv pool conv pool fc
Kernel 7 3 3 - -
Stride 2 2 1 1 -
Channel 64 - 1024 - 8

training dataset size of 1200 and a test dataset size of 300. The
batch size is 10. We usually let the training reach 500 epochs,
which takes around 4 hours with a Quadro K2200 (4 GB of
memory).

D. GAN’s results

Figure 3 shows examples of image translation from the
visible to IR domain accomplished with GAN. Synthetically
generated images are almost identical to IR images; most of
the differences come from a blurring effect that sometimes
appears or a loss of texture. We found that the edges are
particularly well preserved which, according to intermediate
results from the feature extractor, is what matters the most.

E. Deep Homography Estimation

Following the GAN, the image pair is fed to a CNN.
The entire architecture can be seen in Figure 2. The feature
extractor is a ResNet34 [68], which is not pretrained, and
the predicted point estimator is composed of fully connected
layers. Using the predicted points, we compute a homography
matrix. To solve that task differently, we use the deep linear
transformer (DLT), a homography solver from [50].

F. Unsupervised Learning

Our deep homography network is trained end-to-end using
an unsupervised triplet loss. The main criteria are the similarity
between reprojected features and, thus, alignment of both
images. Even though they are not needed for training, ground
truth is still required for validating our approach. They were
computed by manually matching points and shown in Figure 4.

TABLE III
AN OVERVIEW OF THE SEQUENCES FROM THE VLIRVDIF [69] DATASET

Sequence Distance People Light Env. Background
Laboratory Near ✓ Artificial Indoor Wall
Camouflage Near & Far ✓ Sunlight Outdoor Forest

Trees Far ✓ Sunlight Outdoor Forest
Guanabara Bay Far X Night Outdoor Water

Patio Far ✓ Twilight Outdoor Building

1) Loss Expression: The training loss is taken from [50].

min
f,m,h

Ln(I
′
ir, Ivi) + Ln(I

′
vi, Iir)− λL+ µ||H − I|| (1)

where I ′ir and I ′vi are the reprojected feature maps from the
visible and the infrared image, Iir and Ivi the patches with no
reprojection. H is the multiplication of homography matrices
to encourage their symmetry, with I being the identity matrix.
The idea is that we will switch the features of Iir and Ivi and
compute the opposite homography, Hvis−>ir. As we want
Hir−>vis and Hvis−>ir to be inverse, their multiplication
should be as close as possible to the identity matrix I. The
weights are equal to λ = 2.0 and µ = 0.01. L is a term
that optimizes for discriminative features and Ln is the loss
between the reprojected I ′ and I .

IV. EXPERIMENTS

A. Datasets

The experiments were performed on the open-source
Visible-Light and Infrared Video Database (VLIRVDIF) [69].
For both modalities, the images are available as either syn-
chronized, unsynchronized, registered, or unregistered, with
all possible permutations of those. Since the task explored in
this work is multimodality homography estimation, we use
the synchronized unregistered IR and synchronized registered
visible images. Although this dataset was designed for image
fusion, it is also suitable for image registration. The scenes are
filmed in various settings in Brazil, including indoor and out-
door, with close foreground, distant foreground, natural light,
indoor light, water as background, a forest as background, etc.
We formally detail the scenes in Table III.
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Fig. 3. For each scene, from top to bottom, real visible image, real IR image, GAN generated IR image.

B. Implementation details

The model is implemented in PyTorch [70] using PyTorch
Lightning [71] and Hydra [72]. We follow the training and
evaluation protocols from [9]. To evaluate our results, ground-
truth homographies are manually computed.

V. RESULTS AND DISCUSSION

A. Comparisons with existing solutions

To validate our approach, we compare with four state-of-
the-art methods from the literature, namely SOSNet [73], CNN
matching [74], SIFT [75] and Debaque et al. [9]. All of
those methods except the latter were used in conjuncture with
RANSAC [76], USAC [77] and MAGSAC [78].

The quantitative results of our method are shown in Ta-
ble IV. The error is expressed in the percentage of mean
pixel error on average image length. For example, if the
image is 256×256 and the mean pixel error is 5, the error
percentage would be (5/256) ∗ 100 = 1.95%. We show a
clear improvement over Debaque et al. [9] thanks to using the
preprocessed images of our domain adaptation GAN. Only
the method SOSnet on the “Trees” sequence outperform the
proposed approach. Some visual examples of our results can
be seen in Figure 5.

B. General discussion on experiments

As shown in Table IV, the proposed GAN allows to signif-
icantly reduce the registration error. Note that the GAN may
cause artifacts like blurring or hallucinations that could induce
inaccuracy in the localization of features.

VI. CONCLUSION

This paper addressed the problem of multimodal image
registration as well as visible to infrared image generation

using a GAN network. The GAN is trained and evaluated
on a public visible and infrared video database. Our method
was compared with a similar deep homography network which
does not use a GAN, as well as several other baseline methods.
It was demonstrated, in our experimental setup, that using
a GAN-based domain transfer function before feeding the
imagery to the deep homography network significantly reduces
the registration error.

Future works might include a deeper study of comparative
metrics for evaluating multimodal registration methods. An
ideal metric would be invariant to domain change, but dis-
criminant to viewpoint change. Additionally, focus on better
generalization would also be useful for most applications, in
order to apply the same model to different environmental
settings. An analysis of feature localization errors caused by
GAN artifacts could also be done, and how to mitigate those
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M. Staring, “Nonrigid image registration using multi-scale 3d convolu-
tional neural networks,” in International conference on medical image
computing and computer-assisted intervention, pp. 232–239, Springer,
2017.

[28] B. D. d. Vos, F. F. Berendsen, M. A. Viergever, M. Staring, and
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APPENDIX
ADDITIONAL FIGURES

Laboratory

Camouflage

Trees

Bay

Fig. 4. For every sequence, here is an example of our thermal to visible ground-truth registration presented in the form of an anaglyph.

Laboratory Camouflage

Trees Bay

Fig. 5. For each scene, anaglyph between thermal and GAN generated image before registration (top left) and after registration (top right), anaglyph between
the thermal and visible generated image before registration (bottom left) and after registration (bottom right).


