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Abstract—Humans are very good at directing their visual
attention toward relevant areas when they search for different
types of objects. For instance, when we search for cars, we
will look at the streets, not at the top of buildings. The
motivation of this paper is to train a network to do the same
via a multi-task learning approach. To train visual attention,
we produce foreground/background segmentation labels in a
semi-supervised way, using background subtraction or optical
flow. Using these labels, we train an object detection model to
produce foreground/background segmentation maps as well as
bounding boxes while sharing most model parameters. We use
those segmentation maps inside the network as a self-attention
mechanism to weight the feature map used to produce the
bounding boxes, decreasing the signal of non-relevant areas.
We show that by using this method, we obtain a significant
mAP improvement on two traffic surveillance datasets, with
state-of-the-art results on both UA-DETRAC and UAVDT.
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I. INTRODUCTION

There is increasing interest in automatic road user detec-
tion for intelligent transportation systems, advanced driver
assistance systems, traffic surveillance, etc. Road user de-
tection has its own set of challenges and difficulties, such as
the high speed of some road users, the frequent occlusion
between them and the small size of road users appearing
afar. Despite huge improvements in the last years thanks to
advancements in deep learning-based methods, results still
need to be improved for reliable practical applications.

Recently, a new family of object detectors were proposed
based on keypoint detection rather than based on bounding
box classification [1]–[3]. This approach presents several
advantages, including not having to manually design anchor
boxes and having to process fewer candidate boxes. Detect-
ing objects in this way is deceptively simple and elegant,
and quite fast. It yields state-of-the-art accuracy results on
several datasets. Therefore, in this work, we build upon
CenterNet [3] by designing a novel convolutional neural
network (CNN) model that directs its attention towards the
areas of interest and thus decreases the probability of having
false detections in incongruous areas.

Our contributions are: 1) a self-attention mechanism based
on multi-task learning (object detection and segmentation)

Figure 1. A visualisation of the attention map produced by SpotNet on
top of its corresponding image, from the UAVDT [6] dataset.

and 2) a semi-supervised training method that capitalizes on
automatic foreground/background segmentation annotations.

The idea of attention and self-attention has been around
for some time now, most notably in image captioning [4]
and natural language processing (NLP) [5]. In those works,
neural networks are trained to learn which parts of the input
are the most important to solve the task. But they do so
progressively, using recurrent neural networks. Can a simple
CNN learn which areas it should use to increase its visual at-
tention? In this work, we show that it is indeed possible and
beneficial for object detection by using a semi-supervised
training approach and multi-task learning. The network is
trained for both object detection and foreground/background
segmentation, the latter being also used to weight object
detection feature maps. Indeed, the foreground/background
segmentation is used in an internal attention mechanism
that gives more weight to areas useful for detection. In
figure 1, we can visualize what the network learns from this
approach, that is to concentrate the keypoint search on areas
where there are indeed road users, and therefore reducing
the response of any other neuron. One can see this process
as shining a spotlight on relevant areas and dimming the
lights everywhere else. Therefore, we named our method,
SpotNet.

This attention approach is particularly beneficial for
keypoint-based methods since we are globally looking for
keypoints on the whole image at the same time, and not just



classifying the object in a cropped bounding box. However,
a question remains. How can we train such a self-attention
process? Typically, object detection datasets do not provide
the segmentation ground-truth since it is very costly and
time-consuming to produce. Instead, we rely on classical
computer vision techniques to generate automatic pixel-wise
annotation labels and on datasets providing video sequences
instead of single frames to train the network. In the case
of fixed camera video sequences, we successfully employ
a background subtraction method to obtain the automatic
annotations, while in the case of moving camera video
sequences, we rely on dense optical flow for the same
purpose.

Although we use imperfect foreground/background seg-
mentation annotations, we can train a network to produce
quality segmentation maps by using multi-task learning.
The detection and segmentation tasks are trained jointly
by sharing all the parameters of the backbone network.
Both tasks are mutually beneficial. Indeed, by producing
a better segmentation, the object detection task benefits
from a better attention mechanism. And by producing better
object detection, the parameters of the backbone network
get better at recognizing the features of interest from the
images to improve the segmentation maps. We validated
our method on two popular traffic scene datasets, and we
show that our method is the state-of-art on these datasets by
improving significantly the performance of the base network
(CenterNet).

II. RELATED WORK

Object detection as meant in this paper is the task of
drawing a rectangular bounding box around objects of
interest in an image, as well as producing a class label for
each box. All state-of-the-art object detection methods have
been based on deep learning since its rise. They can broadly
be split up into two main categories, two-stage and one-stage
methods.

Two-stage methods divide the task of object detection
into two steps, producing a set of object candidates, and
then computing a score, a label and a coordinate offset
for each box. The first deep learning-based method was R-
CNN [7], which used an external method to produce box
candidates, namely selective search [8]. It then passed each
candidate in a CNN to compute features for each box. A
classification is done on those features by a SVM afterwards.
Fast R-CNN [9] aimed to increase the speed of R-CNN
by passing the whole image through a CNN once, and
afterwards just cropped the relevant parts of the feature map
for each box candidate for classification. Faster R-CNN [10]
is a further improvement that introduced the RPN, a region
proposal network that shares most of its parameters with
the classification and regression parts, making it even faster
and more efficient than its predecessors. RFCN [11] further
builds upon Faster R-CNN by learning to detect and classify

parts of objects and then using a grid of parts to vote on
each object. Cascade R-CNN [12] addresses the problems of
the mismatch between the minimum IOU (Intersection over
union) used to evaluate during inference, and the minimum
IOU used to select a positive sample during training. They
also address overfitting during training by training while
progressively increasing the IOU thresholds.

One-stage methods aim to reduce the processing time
of two-stage methods by removing the candidate proposal
phase and by detecting objects directly from the feature
map. The first one-stage method was YOLO [13] which
divides the input image into a regular grid and makes
each cell predict two bounding boxes. Further iterations of
the method, YOLOv2 [14] and YOLOv3 [15] built upon
it by using anchor boxes, a better backbone network and
several other tweaks. SSD [16] addresses the multi-scale
detection problem by combining feature maps at multiple
spatial resolutions and then applying anchor boxes to look
for objects. RetinaNet [17] uses an FPN (Feature pyramid
network) [18] to produce a multi-scale pyramid of features
and applies a set of anchor boxes followed by non-maximal
suppression to find objects. CornerNet [1] uses the Hourglass
network [19] paired with corner pooling layers to detect a set
of top-left corners and bottom-right corners, and combines
them with a learned embedding. Keypoint Triplets [2] builds
upon CornerNet by improving the corner pooling layers, and
by also detecting a center keypoint to validate each object.
Objects as Points [3] detects an object as a center keypoint
and regresses the size of the object to find the bounding box.

Attention mechanisms in object detection have been
around for a while. In Geometric Proposal for Faster R-
CNN [20], the authors re-rank the proposals of the region
proposal network depending on a geometric estimation of
the scene, outperforming the standard Faster R-CNN by a
large margin. Their geometric estimation of the scene is
mostly based on vehicle scale. The HAT [21] method uses
a hierarchical attention mechanism that first trains a part-
specific attention model. Then an LSTM models the relations
between those parts, making it a part-aware detector. FG-BR
Net [22] uses background subtraction methods to produce
a foreground image that is fed as another input to the
network. They also introduce a feedback process from the
detection outputs to the background subtraction to keep
static objects in the foreground image. Compared to these
models, our attention mechanism is simple, elegant and fast.
Furthermore, we do not need background subtraction at
inference, only during the training phase.

III. PROPOSED METHOD

Figure 2 shows a detailed overview of our complete
model.
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Figure 2. Overview of SpotNet: the input image first passes through a double-stacked hourglass network; the segmentation head then produces an attention
map that multiplies the final feature map of the backbone network; the final center keypoint heatmap is then produced as well as the size and coordinate
offset regressions for each object.

A. Base network

Our method is based upon CenterNet [3], not to be
confused with the homonym method CenterNet, or keypoint
triplets [2]. This method trains a backbone network to
recognize the center point of objects by assigning the center
pixel of a box to be the ground-truth center and gives a
reduced loss for other close points. The width and height
of the bounding box are regressed, as well as the coordinate
offset of the box (to compensate from the error caused by the
smaller spatial resolution of the output). The final output is
thus a center point heatmap for each possible label, an object
size for each point, and an offset for each point, the size and
offset being label agnostic.

B. Multi-task Learning

Our main idea is to train a network to perform multiple
tasks, to make it better for at least one of the tasks. In
our case, we train a network to perform segmentation of
objects of interest while performing bounding box detec-
tion, thus making the shared parameters more generic and
less prone to overfitting. To do this, we add a two-class
(foreground/background) segmentation head to the network
and train this head with semi-supervised annotations from
training datasets (more details in subsection III-D).

The added segmentation head takes as input a feature map
that has been reduced by a factor of four in terms of spatial
dimension when compared to the input. It consists of three
3 × 3 convolutions, with upsampling layers in between. The

channel dimension is reduced to 1 in the last convolution,
thus resulting in a segmentation map that is the same width
and height as the input, with a single channel. The loss, Lseg ,
used to train this head is the binary cross-entropy, given by

Lseg = − 1

N

N∑
i=1

yi ∗ log(xi) + (1− yi) ∗ log(1− xi), (1)

where yi is the annotation label for sample i, xi its pre-
dicted label by the network and N the number of samples.
We found out during our experiments that it works better
than the initial mean squared error loss that we had tried
initially.

C. Self-Attention Mechanism

To further benefit from our learned segmentation map, we
implement a simple yet effective self-attention mechanism
within the network. Once we obtain our segmentation map,
we downsample it by a factor of 4 to reduce it to the
spatial dimension of the original feature map. To attenuate
the response at locations unlikely to contain an object of
interest, we multiply every channel of the feature map with
our segmentation map, thus reducing the probability of false
positives in irrelevant areas.

D. Semi-Supervised annotations

To train our model to produce foreground/background
segmentation maps, we had to produce semi-supervised



pixel-wise segmentation annotations. To do that, we took
advantage of having access to full video sequences, despite
training and evaluating on a single frame at a time. For
the fixed camera video sequences, we used the background
subtraction method PAWCS [23]. Since background subtrac-
tion is not designed to work with a moving background,
for the moving camera video sequences, we used Farneback
optical flow [24] followed by some basic image processing
and a threshold on motion magnitude. For both automatic
two-class segmentation results, we then do an intersection
with the ground-truth bounding boxes for each frame to
reduce noise and to obtain pixel-wise segmentation anno-
tations only for the object categories to detect. All other
object categories, not inside ground-truth training bounding
boxes, are therefore labelled as background. This results
in fairly good foreground/background segmentation maps,
with sometimes squared corners at one or more sides, due
to the intersection with bounding boxes, as can be seen
in Figure 3. In our experiments, we find that not only are
these non-perfect segmentation annotations good enough to
train good attention maps, it also allows our segmentation
head to produce segmentation maps comparable to good
unsupervised foreground/background segmentation methods.

It should be noted that although our method requires
videos for training to obtain the semi-supervised segmen-
tation annotations, once trained, it can be applied to single
images.

Figure 3. Example of semi-supervised annotations on UA-DETRAC [25]
produced by PAWCS [23] and the intersection with the ground-truth
bounding boxes.

E. Training for multiple tasks

To adapt the training loss of the whole network, we
added the binary cross-entropy loss of our segmentation head
(equation 1) to the original CenterNet loss. The center point
heatmap loss Lheat is calculated with the focal loss [17],
and the losses for the regressions for the offset Loff and
width/heigth LWH are formulated as L1 losses as in the
original paper [3]. The total loss Ltot is given by

Ltot = Lheat + Loff + Lseg + 0.1 ∗ LWH . (2)

The total loss is thus the sum of all losses, with the width
and height regression having less weight than the others, 0.1
compared to 1.

IV. EXPERIMENTS

A. Datasets

To validate the effectiveness of our method, we trained
and evaluated it against other state-of-the-art methods on
two datasets of traffic scenes, namely UA-DETRAC [25] and
UAVDT [6]. Figure 4 and Figure 5 show example frames of
UA-DETRAC and UAVDT respectively, with their ground-
truth. These two datasets were captured with very different
settings, UA-DETRAC being filmed with a fixed camera
for every scene, and UAVDT with a moving camera. Both
datasets have pre-determined test sets, and we used a subset
of the training data to do the validation.

Figure 4. Sample from UA-DETRAC with the ground-truth bounding
boxes in yellow.

Figure 5. Sample from UAVDT with the ground-truth bounding boxes in
yellow.

Evaluation is done using the Matlab code provided by
the authors of both datasets. A strict training and validation
protocol was followed and the testing data was never seen
by the network before the final evaluation. The performance



measure used for evaluation is the mAP, the mean Average
Precision, with a minimum IOU of 0.7 between inferred
and ground-truth bounding boxes. The minimum IOU is the
minimum overlap of a bounding box with the ground-truth
to be considered a true detection. The IOU is computed
as the intersection of the boxes divided by the union of
the boxes. The mean average precision is the mean of the
average precisions for all classes for multiple values of
recall, ranging from 0 to 1 with small steps, typically of
0.1.

B. Implementation Details

We used the stacked hourglass network as our backbone
because it shows the best performance for keypoint estima-
tion. This network is composed of modules of downsampling
and convolutions followed by upsampling and convolu-
tions with skip connections in an encoder-decoder fashion.
For our experiments, we use the Hourglass-104 version
as in [1] which stacks two encoder-decoder modules. We
implemented the model in PyTorch 0.4.1 using Cuda 10.0.
Experiments were run on a workstation with 32 GB of RAM
and a NVIDIA GTX 1080Ti GPU. The Github repository for
this project is https://github.com/hu64/SpotNet.

C. Object detection results

The experimental results are shown in Table I for UA-
DETRAC and in Table II for UAVDT. We outperform
our baseline, CenterNet, by a very significant margin on
both datasets while being the state-of-art results on both
datasets as well. The results are very coherent, showing
approximately the same percentage of improvement over
CenterNet on both datasets, the absolute value on UAVDT
being smaller.

For UA-DETRAC, not only do we outperform all previ-
ously published results, we do so in every category, showing
the benefit of our self-attention mechanism based on multi-
task learning. Moreover, the improvements are particularly
impressive for the category hard and cloudy, meaning that
our model is particularly good for hard examples. It is inter-
esting to note that the improvement for the easy category is
very small, due to the mAP values being already very high.
Nonetheless, improvement is consistent across all categories.
At the moment of writing, our model outperforms every
published result on this dataset, including ensemble models
from challenges [26].

The UAVDT dataset is more difficult than UA-DETRAC
due to its high density of small vehicles and aerial point of
view, but the percentage of improvement remains consistent.
Our model also outperforms every published result on this
dataset by a very significant margin.

D. Foreground/Background segmentation results

Although that was not our principal objective, it is
nonetheless interesting to see how we do on specialized

foreground/background benchmarks. To produce results, we
used our best model trained on UA-DETRAC and ran it
on three sequences of the changedetection.net dataset [32]
containing only vehicles (because UA-DETRAC includes
only annotations for vehicles). To obtain the foreground, we
took the attention maps produced by our network, applied
a binary threshold and then masked the resulting image
with the bounding boxes detected by our network to remove
noise. We can see in table III that our method produces
competitive results, although we do not quite reach state-of-
the-art foreground/background performance. Figure 6 shows
qualitative results on a few frames. Our method does not
always fit the object boundaries very well. This is expected
since the training annotations are imperfect. Nevertheless,
we outperform several classical methods, at no additional
cost when producing bounding boxes. It is important to note
that a limitation of our model is that it must be trained on
the objects we want to segment.

V. DISCUSSION

A. Ablation study

To detail the contribution of each part of our model, we
conducted an ablation study on UA-DETRAC. Table IV
shows that even though multi-task learning helps, the biggest
contribution comes from combining our attention process
with it. To further understand the contribution of each part,
we draw the precision/recall curve (Figure 7) compared to
several other methods on UA-DETRAC. On this curve, we
can note that the multi-task learning by itself (SpotNet No
Attention) helps to be more precise, but does not help to
detect more objects, i.e. to reach improved values of recall.
On the other hand, the attention mechanism does both, it
helps to be even more precise for the same values of recall
(fewer false positives), and it also allows the model to detect
more and reach significantly higher values of recall.

Since the network is looking for keypoints on the whole
image, it is natural that concentrating the search on learned
foreground pixels will increase the probability that the key-
points found belong to the objects of interest, thus reducing
the rate of false positives. Furthermore, the experiments
show that this increases recall because the network can
concentrate on useful information.

It is expected that learning the segmentation task jointly
with the object detection task can be mutually beneficial
since both tasks have a large overlap in what needs to be
learned. The main difference is that object detection needs to
separate instances, while segmentation needs a more precise
border around the objects. We show that semi-supervised
annotations are good enough for our purpose, and multi-
task learning by itself, based on those annotations, improves
precision.

https://github.com/hu64/SpotNet


Table I
RESULTS ON THE UA-DETRAC DATASET [25]. 3D-DETNET RESULTS ARE FROM [27], AND OTHERS RESULTS ARE REPORTED AS IN THE RESULTS

SECTION OF THE UA-DETRAC WEBSITE (BOLDFACE: BEST RESULT, Italic: INDICATES OUR BASELINE).

Model Overall Easy Medium Hard Cloudy Night Rainy Sunny

SpotNet (ours) 86.80% 97.58% 92.57% 76.58% 89.38% 89.53% 80.93% 91.42%

CenterNet [2] 83.48% 96.50% 90.15% 71.46% 85.01% 88.82% 77.78% 88.73%

FG-BR Net [22] 79.96% 93.49% 83.60% 70.78% 87.36% 78.42% 70.50% 89.8%

HAT [21] 78.64% 93.44% 83.09% 68.04% 86.27% 78.00% 67.97% 88.78%

GP-FRCNNm [20] 77.96% 92.74% 82.39% 67.22% 83.23% 77.75% 70.17% 86.56%

R-FCN [11] 69.87% 93.32% 75.67% 54.31% 74.38% 75.09% 56.21% 84.08%

EB [28] 67.96% 89.65% 73.12% 53.64% 72.42% 73.93% 53.40% 83.73%

Faster R-CNN [10] 58.45% 82.75% 63.05% 44.25% 66.29% 69.85% 45.16% 62.34%

YOLOv2 [14] 57.72% 83.28% 62.25% 42.44% 57.97% 64.53% 47.84% 69.75%

RN-D [29] 54.69% 80.98% 59.13% 39.23% 59.88% 54.62% 41.11% 77.53%

3D-DETnet [27] 53.30% 66.66% 59.26% 43.22% 63.30% 52.90% 44.27% 71.26%

Input Image Ground-truth SpotNet (ours) PAWCS [23] SGMM [34] GMM [36]

Figure 6. Example of foreground/background segmentation maps obtained with several segmentation methods. First row: frame 1015 of “highway”,
second row: frame 967 of “traffic”, third row: frame 883 of “boulevard”.

Table II
RESULTS ON THE UAVDT [6] DATASET (BOLDFACE: BEST RESULT,

Italic: INDICATES OUR BASELINE).

Model Overall

SpotNet (Ours) 52.80%

CenterNet [2] 51.18%

Wang et al. [30] 37.81%

R-FCN [11] 34.35%

SSD [16] 33.62%

Faster-RCNN [10] 22.32%

RON [31] 21.59%

B. Limitations of our Model

One of the limitations of our model is the fact that it
needs semi-supervised annotations to be trained properly.
However, we believe that in most real-world applications,

Table III
RESULTS ON THE CHANGEDETECTION.NET [32] DATASET. RESULTS

ARE AVERAGED FOR SEQUENCES “HIGHWAY”, “TRAFFIC” AND
“BOULEVARD” (BOLDFACE: BEST RESULT).

Model Average F-Measure

PAWCS [23] 0.872

SuBSENSE [33] 0.831

SpotNet (Ours) 0.806

SGMM [34] 0.766

KNN [35] 0.731

GMM [36] 0.709

video sequences are available and we can thus run back-
ground subtraction or optical flow to generate them. In other
cases, pre-trained semantic segmentation methods could be
used to obtain the desired annotations.



Table IV
ABLATION STUDY ON THE UA-DETRAC [25] DATASET.

Attention Multi-Task Overall Easy Medium Hard Cloudy Night Rainy Sunny

86.80% 97.58% 92.57% 76.58% 89.38% 89.53% 80.93% 91.42%

84.57% 96.72% 90.85% 73.16% 86.53% 88.76% 78.84% 90.10%

83.48% 96.50% 90.15% 71.46% 85.01% 88.82% 77.78% 88.73%

Figure 7. Precision/Recall curve of our model compared with a variant
and other methods.

VI. CONCLUSION

In this paper, we presented a novel multi-task model
equipped with a self-attention process, and we trained it with
semi-supervised annotations. We show that these improve-
ments allow us to reach state-of-the-art performance on two
traffic scenes datasets with different settings. We argue that
not only does this improve accuracy by a large margin, it also
provides instance segmentations of the road users almost at
no cost.
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