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ABSTRACT 
This paper proposes a novel, lightweight convolutional neural network 

(CNN) designed for edge device deployment. The CNN is developed to recognize 
and classify threats or targets of interest. The model is equipped with a real-time 
hotspot detection algorithm, which enables it to process information quickly and 
accurately, resulting in improved inference time of up to 20fps and a detection 
range of more than 400 meters with typical thermal situational awareness sensors. 
The proposed CNN has been rigorously tested and validated to demonstrate its high 
accuracy, sensitivity, and low false positive rate, providing a reliable solution for 
edge devices to detect potential targets. Additionally, the CNN's lightweight design 
allows for easy deployment, making it an ideal solution for extending the security 
bubble for edge devices. The proposed model can be used for a variety of 
applications, including surveillance, security, and object recognition.  

 
Figure 1: An overview of the proposed framework for threats detection and classification. 
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1. INTRODUCTION 
 

Land platform crews find themselves with 
an ever-increasing workload due to the 
multitude of sensors and vast quantities of 
data they generate. Assistive technologies are 
required to help reduce this cognitive 
overload particularly in the observation of 
imagery from both visual and thermal 
sensors.  

 
Furthermore, the environment around the 

vehicle can be very busy with people, other 
vehicles, and potential threats that can come 
in and out of the scene as the mission 
proceeds. Human operators and stakeholders 
need to perceive an event in the present 
situation, understand its significance and 
anticipate its change, to make decisions and 
perform actions. For example, in a combat 
environment, the crew should be able to 
detect, recognize and identify persons or 
objects of interest, comprehend their context, 
predict their behavior, share the information 
across a decision network and perform the 
required actions. 

 
 Thermal imaging [1]–[3]is justified here as 

it is a handy tool for threat and object 
detection due to its ability to detect objects 
with elevated temperature, which can 
indicate the presence of a target of interest. 
Thermal cameras can pick up on small 
temperature deltas, which allows for sensing 
people, vehicles, and animals from a distance 
day and night. This makes it a great tool for 
security and military personnel who need to 
detect threats before they arrive in proximity, 
maintaining a security bubble around the 
platform. Contrarily to visible ones, thermal 
cameras can also sense objects in low light or 
complete darkness, which further increases 

their advantage over their more widespread 
counterpart. 

 
The thermal imagers we are interested in 
need to be integrated into an edge 
environment comprising small digital image 
processing units. This environment allows 
for collecting the data stream, extracting 
information, and performing target detection 
and identification at the edge. Existing target 
detection and identification algorithms rely 
on computationally- and memory-intensive 
models such as deep neural networks. 
Therefore, it is crucial to leverage edge 
processing techniques to redesign, compress, 
deploy, and integrate target detection and 
classification models on edge.  
  

In this work, we propose a novel framework 
for target detection in an edge environment 
(see Fig. 1). The framework comprises two 
main algorithms: a motion detector and a 
classifier. The classifier is based on a novel 
lightweight convolutional neural network 
(CNN); we call it MiniSQNet. The 
advantages of the proposed method are 
threefold. First, it is sensitive to objects 
smaller than the ones detected by 
conventional edge CNN models[4], [5]. 
Second, it has a low latency and can identify 
objects of interest quickly. The proposed 
MiniSQNet doesn’t need to process the entire 
(2K or 4K) high-resolution image. It only 
operates on small regions with high 
likelihood of a target of interest. Third, it 
provides accurate localization of the detected 
targets. 
 

Our method can detect and classify objects 
or threats with a high degree of accuracy and 
sensitivity, offering a typical detection range 
of over 400 meters. The proposed lightweight 
CNN is a reliable solution for edge devices 
since it consumes less power (~ 6 Watts) and 
occupies less than 2 MB memory, which 
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makes it an ideal solution edge environments 
such as smart sensors. 

  
The rest of the paper is organized as 

follows: Section 2 provides an overview of 
related work, Section 3 describes the 
methodology and the architecture of the 
proposed model, Section 4 provides 
experimental results, and Section 5 concludes 
the paper and provides directions for future 
work. 

 
2. Related Works 

   
In this section, we present an overview of 

methods related to our work.  
 
Compact Model design for light networks 

refers to the process of creating a deep neural 
network (DNN) model with a compact 
architecture that has fewer parameters and 
requires less computational resources 
compared to larger models. The goal of small 
model design is to balance the trade-off 
between model size and accuracy, such that 
the smaller model still performs well for the 
target task. 

  
To achieve this goal, various techniques are 

employed such as reducing the layers in the 
model, using lighter operations such as 
depth-wise separable convolutions, and 
removing redundant or less impactful 
features. The specific design choices will 
depend on the specific task, the available 
computational resources, and the desired 
trade-off between model size and accuracy. 
The most notable works in this field include 
MobileNet [6]–[8], ShuffleNet [9], [10], 
SqueezeNet [11] and EfficientNets [12].  

  
Small model design is particularly 

important for deployment on edge devices, 
where computational resources are limited, 
and the models need to be efficient and fast. 
Additionally, smaller models can be more 

accessible for training and deployment in 
low-resource settings. 

 
Model Compression is a technique used to 

reduce the size of deep learning models while 
maintaining their accuracy. Pruning is the 
most popular neural network compression 
technique used in this regard. Pruning is an 
optimization strategy. It iteratively removes 
redundant or less critical neurons or weights 
and retrains the model to compensate for the 
performance error. It has been applied to a 
wide range of models, including CNNs, 
recurrent neural networks, and transformers. 
Pruning can either be rule-based or learning-
based [13], and both approaches are still 
investigated in the literature. There can be 
several levels of granularities for pruning 
[14], fine-grained, vector-level, kernel-level 
group-level and finally filter-level pruning. 
Some notable works in this field include 
[15]–[18]. 

 
Target detection is a widely researched 

field in computer vision. Numerous 
approaches have been proposed for object 
detection, ranging from traditional methods 
such as SVM [19] and Haar cascades [20]¸ to 
more recent deep learning methods such as 
YOLO [21]–[27] and Faster R-CNN [28]–
[30]. 

   
In the context of target or object detection, 

several researchers have applied model 
pruning to reduce the size of DNN models 
while maintaining their accuracy. For 
example, Chen et al. proposed a pruning 
method for YOLOv3 [31], and Li et al. 
proposed a pruning method for MobileNet 
[32]. Our method is different in twofold. 
First, it performs classification which makes 
it lighter and faster. Second, it allows 
detection of distant (or very small) targets of 
typically more than 400 meters, while 
baseline methods are limited to 60 meters 
detection from thermal sensors. 
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3. Methodology 

 
We describe in this section the proposed 

framework shown in Fig. 1.  
 

3.1. Motion detector 
 
We first use a motion detector to extract 

candidate targets from each frame of data 
stream. In this work, we assume that targets 
of interest are moving objects. For instance, 
persons performing suspicious activities or 
moving in specific areas, vehicles moving in 
the scene with respect to the camera, etc. In 
this work we focus on three types of targets, 
moving persons, vehicles, and drones. The 
motion detector is a classical algorithm that 
detects local changes in each frame and 
indicates the pixels containing the maximum 
likelihood ratio of change. This classical 
algorithm uses standard background 
subtraction techniques to isolate the hot-spot 
location. If the position of the hot spot with 
respect to the scene changes slightly for three 
successive frames, then we determine that it 
is in fact a hot moving object (potential 
threat). We use these pixels to generate patch 
images including ROI (Regions-Of-Interest) 
for the classifier.   

 
3.2. Classifier (MiniSQNet) 

 
We propose a novel edge algorithm, a 

lightweight CNN called MiniSQNet, to 
predict if the ROI image is an actual target of 
interest. Our method relies on DNN 
compression techniques. More specifically, 
we first adopt a compact neural network 
architecture called SqueezeNet (SQNet [11]).  
Although this model is tailored to tackle 
hardware resource constraints, it is still 
considered as relatively complex for 
embedded applications with limited power 
and memory budgets. We propose to modify 
the design of the original SQNet making it at 

least 2x smaller while providing competitive 
classification accuracy. 
 
To do so, we combine two compression 
techniques: pruning and knowledge 
distillation.  For pruning, two common 
approaches exist greedy pruning, and one-

shot pruning. In greedy pruning, the pruning 
is done in multiple phases where each layer is 
processed one at a time followed by a 
retraining. This technique is very time 
consuming and requires costly training 
resources. One-shot-pruning on the other 
hand, removes all the filters of the DNN 
retrain once, which is much more efficient. 
However, it requires to choose beforehand 
the pruning threshold.  In our approach, we 
made the pruning threshold as a 
hyperparameter that can be tuned to balance 
compression and performance tradeoffs.  
 
Despite that pruning enables light and 
compressed models, it makes models overfit 
fast and affect its generalization. To mitigate 
this issue, we combine pruning with 
knowledge distillation technique [33]. Its 
goal is to transfer knowledge from a teacher 
model, often a well-trained deeper one to a 
student model, the pruned one in our case. In 
our experiments, we used the original SQNet 
as a teacher model. 
 

Table 1. Validation of our compression strategy. 
 

Model Top-
1 

acc. 

Top-
5 

acc. 

#Params Memory 
size 

(MB) 
SQNet 

(baseline) 
0.72 0.96 740,554 4.2 

Pruned 
(70%) 

0.52 0.88 221.774 0.993 

+distilled 0.68 0.95 221774 0.993 
+quantized 

(8bits) 
0.67 0.94 223014 0.942 
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4. Implementation details 
 

4.1. Datasets 
 

Annotated thermal datasets are hard to come 
by. To train our model, we used both open-
source and proprietary (in-house) datasets. 
To train our drone model, we used the 
Svanstrom [34] dataset for object detection 
and generate the ROIs using the drone 
bounding boxes. For pedestrian data, we used 
CVC-14 [35], FLIR [36] and LSFIR [37]. 
Examples of these datasets can be viewed in 
Fig. 2. The vehicles training data are 
collected using our thermal cameras. Each 
dataset has been split into a training, 
validation, and testing sets, and combined to 
create the final sets. 
 
4.2. Training and inference details 

 
Training details. We used the training set 
created from open-source infrared data 
described in Section 4.1 to train the 
lightweight CNN. Before the compression 
phase, we transferred the SQNet (trained on 
visible images) to our dataset. We keep a 
copy of this model as we will use it further to 
guide the training of the smaller model. The 
training procedure is composed of two 
phases.  
 
In the first training phase, we implement one-
shot pruning and retrain the pruned model 
(MiniSQNet) for 25 epochs. We chose the 
pedestrian dataset during this phase since it is 
the largest one, leading to better and unbiased 
optimization of the architecture. At the end of 
these epochs, we distill the knowledge in 
SQNet into MiniSQNet by adding to the 
classification loss a distillation loss as 
described in as described in [33], and retrain 
for another 10 epochs. At the end, we obtain 
a light well-optimized model ready to be 
transferred and scaled to another classes and 
datasets.   
 

The second training phase is model fine-
tuning, while we added multi-heads to the 
classifier to account for the other classes, 
vehicles, and drones. The finetuning phase 
uses only the cross-entropy loss as no further 
compression is implemented at this stage.  
 
Inference details. We first apply a fast 
motion detection algorithm to implement the 
target detection pipeline, as mentioned in 
Section 3.1. The algorithm is composed of 
background subtraction, followed by a 
temporal Hessian detector [39]. This method 
is susceptible to local intensity changes at 
each pixel and effectively captures moving 
targets emitting radiation. 

 
Once the candidate pixels are detected, 

patches centered at these pixels are cropped 
and extracted to be analyzed. The patches are 
then resized and fed into the trained 
lightweight CNN to classify each ROI as a 
target or not a target of interest.     
 
5. Experiments 
 
5.1.  Evaluating the proposed 

compression strategy  
 

 

    

    

    

    

    
 

Figure 2: Samples from our open-source datasets 
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We tested different pruning thresholds (0.6, 
0.7, and 0.8). We found that aggressive 
pruning at 0.8 destroyed the topology in 
specific layers and made the model unable to 
train. On the other hand, setting the threshold 
to lower values doesn’t provide an advantage 
in terms of compression. Accordingly, we 
fixed the pruning threshold to 0.7 in all our 

experiments. That means we kept only 30% 
of the filters, where the score of each filter in 
each layer is related to the activation strength.  

 
In Table 1. we report the evaluation results 

on the CIFAR10 [8] dataset and compare 
them to the baseline (SQNet). As can be seen, 
pruning the model leads to a slight 
performance drop even after retraining, 
which is an indicator of overfitting on the test 
set. Using Knowledge distillation 
compensates for the performance drop and 
increases the accuracy to a competitive value 
compared to the baseline. We also applied a 
post-training quantization to analyze its 
effect on performance. As the results show, 
quantizing the weights from 32bits (floating-
point) to 8bits after training did not affect the 
performance and allowed to remove 50 bytes 
of model size further.   

 

5.2. Evaluating the lightweight CNN 
performance on target 
detection 

 
Our experiments consisted of fine-tuning 

the classification network for each use case, 
using a validation set to determine to perform 
early stopping based on the validation loss 

value. The classification accuracy was then 
computed on a separate testing set for the 
image patches. In a later stage, the entire 
pipeline (including the motion detector) is 
visually validated on testing videos. To 
demonstrate the versatility of our model, 
three experiments were performed. One for 
persons, one for drones, and a final one for 
differentiating between vehicles, drones and 
vehicles threats simultaneously. We report 
the results of our experiments in table 2, and 
compare it to a YOLOv3 baseline. 

 
Our tiny model shows great performance, 

being approximately 1 MB in size, and the 
entire pipeline consuming less than 6 watts of 
power. The YOLOv3 baseline is more than 
20 times that size in comparison, and does not 
perform as well, especially for small or 
distant threats. This excellent efficiency 
comes from the fact that due to our candidate 
selection with the hotspot algorithm, the 
whole image never needs to get processed, 
only the relevant parts.  

Table 2. Results of the proposed target detection model on test data. 
 

Edge CNN 
Models Threat 

Distance 
range (m) 

F1-
Score FPR (%) 

Image 
res. 

(pixels) 
Memory 
size (MB) 

Power 
consumptions 

One-head person [25 – 300] 0.96 2 < 4000 0.993 < 6 watts 

 drone NA 0.99 0.35    
Multi-
heads All 

[25 – 
450+] 0.79 2.6  1.017 NA 

Baseline 
(YOLOV3) 

person 
only [25-60] 0.85 NA 

> 200K 
(Full) > 20 NA 
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In terms of accuracy, we obtain excellent 
F1-Score and false positive rate (FPR) for 
one class threat detection, and slightly lower 
F1-score and FPR for three class detection, 
which is understandable due the occasional 
misclassification of a threat for another type 
of threat. Some qualitative results are shown 
in figure 3, where we can see different types 
of threats being identified, and hotspots being 
identified as non-threats.  

 
6. Conclusion 
 
The lightweight CNN proposed in this paper 
is a promising approach to effectively operate 
on constrained SWaP (Size-Weight-and-
Power consumption) hardware and edge 
environments. The proposed model achieved 
impressive detection results at a low 
computational cost, making it a viable 
solution for real-world applications. It can be 

addition, the proposed model can be easily 

adapted to different environments and 
datasets, thus providing a generalizable 
model for the target (and threat) detection. 
We emphasize that the goal of the lightweight 
CNN proposed in this work is to spot 
potential threats and sense objects of interest 
regardless of the lightning conditions as soon 
as possible (in real-time) and at the farthest 
distances by relying on sensing distant 
moving hot spots in the scene. (i.e., using 
infrared sensors). Once the target is detected 
and localized, a higher resolution visible 
(RGB) or SWIR camera can be used to point 
at and zoom in on the target, capturing 
additional details that aid in threat analysis. 
Our experiments highlight the potential of the 
proposed thermal target detection framework 
in increasing the security bubble around edge 
devices and their carriers. Future work might 
include better using the temporal aspect (i.e., 
using video information instead of static 

 

  

  

 
Figure 3: Qualitative results of our method. Top left and top right: a drone is detected (red) while hotspots 

(white) are classified as non-threats. Bottom left: a drone (blue) and a person (red) are detected. Bottom right: a 
drone (blue), a person (red) and a vehicle (green) are detected. Better seen in color. 
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images) to track targets and making the 
model faster, lighter, and more robust. 
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